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Abstract. By regarding a liquid metal as a mixture of electrons and nuclei, the quantal 
hypernetted-chain (QHNC) equations have been derived from the density-functional theory. These 
in tegd  equations for the ion-ion and electron-ion radial distribution functions (mFs) can give 
the electron distribution function of a n e u M  pseudoatom p(r)  and the effective interionic 
potential P ( r )  self-consistently. using the atomic number ZA as the only input data we apply 
these equations to liquid potassium at 338 K. The iowion RDF g d r )  and structure factor S d Q )  
obtained from QHNC agree with the experimental results from x-ray diffraction very well. The 
electron-ion RDF is calculated to be self-consistent with the effective interionic potential giving 
the ion-ion RDF in the QHNC hamework. For comparison. the results of Ihe pseudopotential 
method with Ashcrofl's model potential (core radius rc = 1.225 A) are also shown: this method 
can give the same ionic S ~ N C ~ U B .  but it provides slightly different electron distributions from the 
QHNC results. These differences b e e n  the QHNC and pseudopotential methods in the electron 
distribution are not observed in liquid sodium. and are amibuted U, the fact that the Ashcroft 
potential @(r) cannot appcopriately approximare the direct correlation function C&), which 
plays the role of a non-linear pseudopotential. 

1. Introduction 

As a traditional method of researching a simple liquid metal, a pseudopotential is used to 
set up an effective ion-ion interaction. In this model the electrons are accumulated around 
an ion according to a linear response to a pseudopotential. Therefore this treatment is 
valid only for a system with weak electron-ion interactions. As a result it is only used for 
simple liquid metals with weak electron-ion coupling. Dagens, Rasolt and Taylor (DRT) [ I ]  
calculated the non-linear electron distribution induced by an isolated ion in an electron gas in 
comparison with the linear response results. Thus, they concluded that the non-linear effect 
plays an important role even in alkali metals, and proposed a non-linear pseudopotential, 
which produces their non-linear electron distribution in the linear response form. Therefore 
it is very important to build up a pseudopotential in such a way as to produce a more 
realistic electron distribution, and it is meaningful to investigate the electron dishibution in 
order to estimate the non-linear effect of the pseudopotential another way. 

On the other hand, a set of integral equations for radial distribution functions (RDFs) 
have been proposed on the basis of the nucleus-electron mixture model using the density- 
functional theory (DFT) with the quantal hypernetted-chain (QHNC) approximation [2]. This 
formulation has already been applied to liquid metallic lithium [3] and sodium [4], and 
has been shown to yield the liquid structures of these metals in excellent agreement with 
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experiment. In the light of the nucleus-electron mixture model, the more bound electrons in 
an ion, the more complicated the problem becomes i n  the calculation of the ion and electron 
distributions. One of the aims of this paper is to confirm that this QHNC formulation is 
applicable to liquid potassium with more bound electrons than sodium. 

As was explained before, it is important for the construction of a pseudopotential to 
obtain knowledge of the distribution of screening electrons. But calculation of the electron- 
ion RDF in liquid metals is only possible by the QHNC method. Furthermore, it is difficult to 
establish the electron distribution around an ion experimentally, and only a few experiments 
have been performed to obtain electron distributions around an ion in liquid metals: no 
experiment has been carried out yet to research the valence electron distribution of liquid 
potassium. The QHNC method has an advantage in the fact that the electron-ion RDF, ion- 
ion RDF, non-linear pseudopotential and effective interionic potential are determined at the 
same time self-consistently from the atomic number ZA as the only input. 

The layout of this paper is as follows. We give an outline of the QHNC method for a 
liquid metal in section 2. In section 3 the implementation of the QHNC method to liquid 
potassium is overviewed, and we report the results of the calculation in section 4. In the 
last section we discuss our results and draw our conclusions. 

M lshitobi and J Chihara 

2. Summary  of formulation 

In this section we recapitulate the QHNC formulation. Details are to be found in [2], [3] 
and [5]. In the first place a liquid metal is treated as an electron-ion mixture. Here we 
assume that ions in a liquid metal are classical particles with a charge Zr and average 
density n6, while the electrons form a quantum fluid with average density n:. Because 
the ions behave as classical particles, the ion-ion and electron-ion RDFs are shown to be 
identical with the ionic and electronic density distributions, respectively, around a fixed 
ion in a liquid metal. With the help of the D I T ,  each RDF can be exactly represented by 
the density distribution function np(rIu,4") of a non-interacting system under an effective 
external potential u::'(r)(i = e ,  I): 

(1) g d r )  = nP(rI@)/4, = ~XP[-D;,%)I 

g d r )  = &riu::)/nl. (2) 

In the above the effective potential u:F(r) is written explicitly in terms of the bare potential 
uil(r) ,  the direct correlation functions (DCFS) Ci,(r) and the bridge function Eil(r): 

(3) @ ( r )  = uii(r)  - r idr ) /B  - B i W B  

Moreover, we have the Omstein-Zernike (02) relations for the electron-ion system [SI: 

g d r )  - 1 = C d r )  + r d r )  
g, l (r)  - I = BCel(r) + Bre,(r).  

(5) 

(6) 
Here B is an operator defined for an arbitrary real number (Y with the Fourier-transformation 
operator 3Q as follows: 
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where x; is the density-density response function of a non-interacting electron gas. 
Equations ( I ) ,  (2). (5) and (6) form a set of integral equations for correlations in an electron- 
ion mixture if some approximations are introduced, as will be mentioned later. 

From the definition of the structure factor &(Q) [5 ] ,  we can obtain an exact relation 
in real space by the use of the inverse Fourier transformation 

n&l(r) = p ( r )  + n: - r'I)gn(r') &' (8) s 
with 

P(Q) = n;cdQ)x;/[l - n 3 X Q ) x ; l .  (9) 

Equation (9) states that the RDF g&) can be expressed exactly as a superposition of neutral 
pseudoatoms with the electron distribution p ( r )  around an ion. On the other hand, in the 
pseudopotential method, the charge distribution p(Q) of a pseudoatom is represented by 
the following linear response formula: 

p(Q) = -n;B%(Q)x'il' 
(10) 

= -n;BwdQ)x;/[l+ @ve(Q)(1 - @"(Q))x$l 

using a pseudopotential wb(Q). the density response function x r  and the local-field 
correction (LFC) C""(Q) in the electron jellium model. While equation (IO) is valid only 
for systems with weak electron-ion correlation, equation (9) is an exact relation for the 
electron-ion system. Comparing these equations, it is apparent that the following two 
replacements make two equations (9) and (10) identical with each other: 

Cee(Q) -Buee(Q) ( l  - @'"(Q)) (11) 

G(Q) (12) 

Thus, we can understand from (1 1) that the electron-electron DCF C,(Q) is approximated 
in terms of the LFC Gjei'( Q) of the jellium model instead of the LFC in the ion-electron 
mixture. From (12). it is seen that the electron-ion DCF C,(Q) plays the role of a non-linear 
pseudopotential. 

In determining a liquid structure, a liquid metal can be regarded as a quasi-one- 
component system which consists of ions alone. In this model the existence of electrons is 
taken into account only in the construction of an effective interionic potential ueff(r),  which 
can be rewritten as 

U;,%) = - v ( r ) / B  + B d r ) / B  (13) 

with the definition 

Bveff(Q) = BudQ)  - ci(Q)n:x;/[l - n : c d Q ) x ~ I  (14) 

in terms of the DCF C ( r )  of the one-component system: 

nbc(Q) 1 - l/WQ) (15) 
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and 
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y ( r )  =nbJ c ( l r  -r'l)[gu(r') - 116'. (16) 

Up to now, we have not considered the inner structure of an ion. In fact an ion consists 
of a nucleus and some bound electrons. Now, the bare potential G&) is derived as 

W r )  = u a ( r )  + v,(lr - r'I)&r') dr' + cLxc($(r) + - p x c ( n ~ )  (17) 

by regarding a liquid metal as a mixture of nuclei and electrons [3]. Here n:(r) denotes 
the bound eIectron distribution, and pxc(n)  is the exchange-comelation potential. In this 
approach we assume that there is no overlapping of bound electrons among ions: accordingly 
we can determine simply the ionic valency 2, from ns(r) as 

s 

Z I  = Z, - 1 n:(r) dr. (18) 

3. Application to liquid potassium 

The set of equations (I) ,  (2), (5) and (6) for the RDFs g&) and the DCF Ctj(r) do not yet 
form a closed set to determine themselves. In order to obtain closed equations, we introduce 
the following approximations. 

(a) The electron-electron DCF C,(Q) is approximated in terms of the jellium LE 
Gj'"(Q) proposed by Geldan and Vosko [6]: 

d'"(Q) = q2/(2q2 + 4g) (19) 

with q = Q/QF, g = 1/(1 + O.O155anrs), 01 = (4/9n)'13, rs = (3 /4~nh) ' /~  and QF the 
Fermi wavenumber. 

in (3) is approximated by Bpy(r; 9 )  of the 
Percus-Yevick equation for hard spheres with diameter U :  

(b) The ion-ion bridge function 

B d r )  B d r ;  v )  (20) 

with a packing fraction parameter defined by 9 nn&s3/6. 
(c) The electron-ion bridge function Bel@) is neglected: 

Be&) = 0. 

(d) The ion-ion bare potential VU@) is taken as coulombic: 

vll(r) = zIe2/r  

because the overlapping of ions is assumed to be zero. 
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The approximation (b) indicates that the spirit of the modified HNC (MHNC) [7] is 
applied to the ion-ion correlation, and (c) denotes that the HNC approximation is used 
in the elecmn-ion correlation. The exchange-correlation potential pxc(n) in (17) is taken 
to be that proposed by Gunnarsson and Lundqvist [8]: 

p d r s )  = -(2/aars)[l f0.0545rs In(l -t ll.4/rs)] (Ryd). (23) 

Under these approximations equations (1). (2). (5) and (6) generate a coupled set of 
integral equations for the DCF C&) and the ion-ion RDF g&) in the following forms: the 
equation for the non-linear pseudopotential C&-) 

A 

BCedr) =.'&I t - rei/8)/n; - 1 - Er&) (24) 

which determines the effective interaction @(r) for the onecomponent fluid through (14) 
if the RDF gn(r )  is provided, and the equation for the DCF C(r) in the one-component fluid 

C(r) = exp[-Bue'(r) + y ( r )  + B d r )  I - 1 - v(r) (25) 

which can give the ion-ion RDF gn(r) for the one-component fluid interacting via uC"(r) 
evaluated by (14). 

The atomic number ZA and the ionic valency ZI of liquid potassium are 19 and 1 
respectively, so that no n; = nb. A potassium ion in the ground state consists of a 
nucleus and 18 bound electrons in the five states Is, 2s. 2p, 3s and 3p. The state of 
liquid potassium can be specified by two parameters: the plasma parameter r pez/a and 
rs = a/ae with the average spherical radius a = (3/4nn0)'/~. 

In order to solve the integral equations in a self-consistent way, it is important to choose 
the initial data. Since the values of the parameters are large (r N 180, rs N 5) for liquid 
potassium near the melting point (336.8 K), we cannot obtain a convergent solution for this 
system if the initial data are not enough close to the real solution. The method of making 
the initial data and the set-up of the grid in the integration of the wave equation are the 
same as were used for liquid sodium [4]. The packing fraction q in the bridge function 
E&; q )  was determined by the Lado criterion [9] in the case of liquid sodium. In the 
present calculation it is chosen to fit the calculations to the experiments. We discuss q later. 

4. Results of calculation 

In this section we show the ion and electron distributions of liquid metallic potassium at 
338 K near the melting point calculated by the QHNC method. At this temperature liquid 
potassium has the number density no = 1.27 x IO-' A-3 [lo]: this yields the plasma 
parameter r = 185.9 with rs = 5.024. Here we set the packing fraction in (20) q = 0.445 
to give the best fit of the ion-ion structure factor &(e) and the RDF gn(r) to experiment. 
As already mentioned, the electron-ion DCF CeI(r) in (14) plays the role of a non-linear 
pseudopotential. So if we replace the DCF C d r )  by a model potential, we can obtain the 
ion-ion RDF ga(r) through (Z), and the electron distribution of a pseudoatom p ( r )  from 
(9) in this approximation. For comparison between the Q m c  and pseudopotential methods, 
we calculate the ion-ion and electron-ion RDFs, p ( r )  and the effective ion-ion interaction 
under the same state parameters with use of Ashcroft's model potential wtc(r): 
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with core radius rc = 1.225 A. 
Firstly the ion-ion swucture factors &(e) are shown in figure 1 for comparison with 

the experiments by Greenfield and co-workers [I l l  (open circles) and by Huijben and van 
der Lugt 1121 (filled circles). The full curve denotes the result obtained by the QHNC method 
with q = 0.445. Our self-consistent &(Q)  agrees with the x-ray diffraction experiments of 
Greenfield ef al and Huijben and van der Lugt excellently. The QHNC srmcture factor (full 
curve) has a higher first peak than that of Greenfield et al, but agrees with that of Huijben 
and van der Lugt. Near the second peak the QHNC result deviates from both experiments 
a little. There is a similar deviation in liquid sodium and in another calculation for liquid 
potassium [13]. Moreover the result of the pseudopotential method, based on Ashcroft's 
model potential (triangles), shows good agreement with the QHNC result using the packing 
fraction q = 0.46. As the values of S d Q  = 0) we obtain 0.0206 from the QHNC method 
and 0.0282 from the pseudopotential method. X-ray diffraction experiments give 0.0247 
(Greenfield et ar) and 0.0241 (Huijben and van der Lugt) for $(O). 

M Ishitobi and J Chihara 

0 1 2 3 " , '  4 

Q ( A - '  ) 
Figure 1. The ion-ion structure factor SII(Q) calculated 
for liquid potassium at 338 K with the state panmeters 
r = 185.9 and rs = 5.024. Full curve, the full 
self-consistent QHNC calculation; open circles. x-ny 
diffraction data of Greenfield et ul [I [I; filled circles. x- 
ray diffraction data of Huijben and van der Lugt [12]: 
triangles. pseudopotential calculation using Ashcroft's 
potential with the core ndius rc = 1.225 A, 

o i i .  2 ' ' ? ' ' 4 ' ' 5 ' 
r l a  

Figure 2. The ion-ion RDFS gt l ( r )  of liquid p o w i u m  
31 338 K. CalCUlated by the QHNC method (full Curve) 
and by the Monte Carlo method [I41 (open circles). The 
filled circles denote the RDF g s ( r )  obuined by Fourier 
transformatian born the structure factor SII(Q) obtained 
by Huijben and van der Lugt. The ui3ngles show the 
RDF g d r )  calculaed using Ashcmft's potential. 

Secondly the ion-ion RDF gn(r ) ,  the inverse Fourier transformation of the structure 
factor &(Q) of figure I ,  is shown in figure 2. Our result (full curve) agrees with the RDF of 
Huijben and van der Lugt [I21 (filled circles) obtained by the inverse Fourier transformation 
of SII(Q) with a slighlly lower first peak. The Monte Carlo (MC) RDF (open circles) of 
Murphy [I41 agrees with the QHNC result very well: the structure factor &l(Q) obtained 
from Murphy's RDF shows good agreement with the experimental one of Greenfield et al. 
The RDF from the pseudopotential method (triangles) fits to the QHNC result with a slightly 
higher first peak. 

Figure 3 shows the effective interionic potentials ueff(r) determining the ion-ion RDFS 
gll(r) .  The QHNC result is denoted by the full curve. The potentials used in the MC 
calculation of Murphy (open circles) and the MD simulation of Jank and Hafner [ 151 (filled 
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-4; " 2 " 3 ' 4 ' " 5 0 1 2 3 

r / a  r i a  
Figum 3. The effective interionic potential vCK(r) Figure 4. The electron-ion RDF gel@) for liquid 
of liquid potassium nt 338 K calculated by the QHNC pobssinm. calculated by the QHNC method (full curve) 
method (full curve), by the pseudopotential method and by the pseudopotential method using AshcmRs 
(chain curve) and using the jellium vacancy model potential (chain CUNC). 
(squares). The filled circles represent the potentid used 
in the MD simulation of lank and Hnfner [IS] and the 
open circles show that used in the MC calculation of 
Murphy 1141. 

circles) have lower limits at the same position. These potentials show similar behaviour at 
the repulsive region and shifted lower limits in depth. In spite of shifted lower limits, these 
potentials give similar g&) and SI,(Q). As seen in figure 2, Murphy's potential gives 
an RDF g&) in good agreement with the experimental g&). The potential of Jank and 
Hafner gives the structure factor &(Q) in good agreement with that of Huijben and van 
der Lugt. Their potential is obtained from a pseudopotential constructed on the basis of the 
criterion proposed by Cohen and Heine [16]. The potential obtained by the pseudopotential 
method (chain curve) and using the jellium vacancy model for ions (squares) are exhibited 
in comparison with the QHNC potential. The jellium vacancy model comes from the QHNC 
formulation by the use of an approximation that the ion-ion RDF g s ( r )  is replaced by a step 
function in the expression for u::f(r) (4). The jellium vacancy model is essentially equivalent 
to DRT'S treatment in the evaluation of a pseudopotential. DRT'S potential, however, has 
a minimum at a position nearer the origin than that in the jellium vacancy model. This 
potential is very sensitive to the choice of the LFC Cj'"(Q). On the other hand, the RDF 
g&) does not depend on the LFC Gj"'(Q) significantly. A different LFC cj""(Q) changes 
the position of the minimum, but does not reflect on the behaviour of the repulsive region, 
which plays an important role in determination of the RDF gs(r) .  The influence of the LFC 
C(Q)  on the effective potential ucff(r) is discussed in the next section. 

Up to this point we have shown the quantities related to the ion-ion correlation; from 
here we show the quantities related to the electron-ion correlation. First, the electron-ion 
RDF g&) is displayed in figure 4. The full curve represents the RDF &(r) obtained by the 
QHNC method, while the chain curve denotes that obtained by the pseudopotential method 
using Ashcroft's model potential. In the core region these RDFS behave differently. In 
particular, the RDF of the QHNC oscillates rapidly near the origin. In order to observe this 
situation, the RDF g,l(r) is magnified for the region r/a < 0.5 in figure 5. There are three 
dips (at r/a = 0.025, 0.0875 and 0.35) in this region. The triangles in figure 5 indicate 



4322 

the positions of the average radii of the ith bound electron state in an ion (i = Is, 2s, 2p, 
3s and 3p). The average radius in the the ith state is defined by fi = ,/S. 
From this figure we find out an interesting fact that each dip in the electron-ion RDF lies 
near the positions of the average radii of bound electrons in an ion. The nearest dip to 
the origin represents the repulsion caused by two electrons in the Is state. The middle dip 
reflects that of eight electrons in the 2s and 2p states, and the outer dip denotes that of 
eight electrons in the 3s and 3p states. It is suggested that the number of related electrons 
determines the depth of a dip and that the width of a dip depends on the expanse of the 
relative orbital. Therefore the Is electrons make a tight and shallow dip, while the 3s and 
3p electrons make broad and deep dips. In figure 4 the RDF ge,(r)  by Ashcroft's model 
potential (chain curve) has a large deviation in the core region, and furthermore has a slight 
but meaningful deviation outside the core region in comparison with the QHNC result. It is 
interesting to note that this difference outside the core region is not found in liquid sodium. 
The electron-ion RDF g,l(r) converges upon unity more quickly at large r than the ion-ion 
RDF g, l ( r ) .  This fact means that the electron-ion correlation decays rapidly, and suggests 
the validity of neglecting the electron-ion bridge function (equation (U)). 

M Ishitobi and J Chihara 
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0.2 0.4 
r l a  r l a  

Figure 5. The electmn-ion RDF &l(r)  magnified in 
the core region, obtained from the QHNC method (full 
curve). The Irimgles ace pioled to point out Ihe average 
ndii of bound electrons. 

Figure 6. The screening eiecmn dhlribution p( r )  of 
a neutral pseudomm calculated by the QHNC method 
(full curve) and by the pseudopotentid method (chain 
curve). The broken curve shows the density of 4s 
electrons of a free atom. Furthermore for the purpose of 
demonstrating the inside behaviour, p ( r )  is magnified 
in the inset. 

Figure 6 exhibits the screening electron distribution of a neutral pseudoatom p(r) scaled 
by no. The QHNC distribution p ( r )  (full curve) has three dips (to show the inner dip, p ( r )  
near the origin is magnified in the inset), and shows similar behaviour to that of a free atom 
(broken curve) with three nodes. The positions of the dips (r /a = 0.025, 0.0875 and 0.35) 
in the QHNC p ( r )  are coincident with that of the RDF gd(r).  Similarly to gel(r), these dips 
reflect the inner structure of an ion. The distribution p ( r )  from the pseudopotential method 
(chain curve) agrees with that from the QHNC method at large r (r /a  > I), but disagrees at 
small r ( r /a  c: I ) .  By contrast it is to be noted that in liquid sodium the values of p ( r )  
agree in the wider range r / n  > 0.5. 
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5. Conclusion and discussion 

We have shown ionic and electronic correlations in liquid potassium at 338 K calculated 
by the QHNC method based on the electron-nucleus model. The bound electron distribution 
of an ion is determined to be consistent with the valence electron and ionic distributions 
around it: the effective potential @(r)  can support only five bound states (Is, Zs, Zp, 3s 
and 3p) with the ionic valency being Z1 = I due to a 4s valence state electron. As shown 
in figures 1 and 2, the RDF g&) and srmcture factor &(Q) obtained by the QHNC method 
agree with the experimental ones excellently. On the other hand the RDF g&) and the 
distribution p ( r )  can be taken as reliable, since these are determined to be consistent with 
the ion-ion RDF gn(r) .  which agrees with experiment. 

In this calculation, we introduced two quantities from outside the QHNC self-consistent 
formulation: the exchangecorrelation potential fix&) in (17) and the LFC d"'(Q) in (19). 
The effective interionic potential @(r)  is influenced by the LFC G ( Q )  sensitively. The 
wc de"(Q) must satisfy some conditions for electrons in the jellium model. Unfortunately 
these conditions for the jellium model do not ensure that the LFC is valid for electrons in a 
real liquid metal taken as an ion-electron mixture. So we have no criteria for the selection 
of LW: G ( Q )  in a liquid metal taking account of the presence of ions. In order to examine 
the influence of the LFC on the effective potential, we calculated the effective potentials 
using four different LFCS: of Geldart and Vosko, of Vashishta and Singwi [ 171, of Taylor 
[18] and of Utsumi and Ichimaru [19]. These four potentials show large disagreements with 
each other. The influence of the wc on the effective potential has a similar tendency as is 
shown by Hafner [ZO]. In spite of the large deviations among the effective potentials due 
to the LFC, the structure factor &(Q) and the RDF gn(r)  are not significantly dependent on 
the choice of wc Gj"'(Q). At the present stage we cannot say which LFC d '"(Q)  is best 
for liquid potassium. 

We have tried to determine the packing fraction q by using the variational MHNC 
(VMHNC) [U], which gives q = 0.47; at this value the structure factor &(e) and the 
RDF gn(r) have a fairly high first peak in the QHNC calculation. Therefore the parameter 
q is determined so as to fit the structure factor &(Q)  to the experiment of Huijben and 
van der Lugt overall. On the other hand, the VMHNC method gives qa.46 for Ashcroft's 
potential. 

As shown in figures 4 and 6, the electron distribution obtained by the QHNC method 
is quite different from that by obtained by Ashcroft's model potential in liquid potassium. 
Such deviations have not appeared in liquid sodium [4]. We cannot find the core radius rc 
of the pseudopotential to yield the best fit to the QHNC p ( Q )  for a liquid potassium. The 
essential difference between the pseudopotential and QHNC methods lies in the determination 
of the pseudopotential w&): in the QHNC method wb(r) is determined to be consistent 
with the density distribution of a pseudoatom p f r ) ,  while in the pseudopotential method 
a pseudopotential wb(r) is approximated by Ashcroft's model potential with a proper 
choice of the core radius rc as input data The comparison of both pseudopotentials in 
liquid potassium and sodium is exhibited in figure 7. In liquid sodium the non-linear 
pseudopotential -Ccr(r)/p (lower full curve) from the QHNC method behaves similarly to 
Ashcroft's model potential (lower chain curve) near the minimum. On the other hand, in 
liquid potassium the non-linear pseudopotential -C&)/p (upper full curve) has a shallower 
minimum than Ashcroft's potential (upper chain curve). It is suggested that this difference 
causes the deviations from the QHNC result in the electronic distribution g&) (figure 4) and 
p(r )  (figure 6) for the case of potassium. Ashcroft's model potential wtc(r )  has a constant 
value for the inside core radius rc (almost inside an ion), so it disregards the fine structure 
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- 
r l a  

-30 1 2 

Figure 7. The electron-ion DQ: Ce[(r), a non-linear pseudopotential. of liquid potassium (upper 
full curve) and of liquid sodium (lower full e w e )  calculaled by the QHNC method. Though 
the DCF C,l(r) oscillates npidly in the core region, the vibntions m masked in order IO make 
a simple figure. Ashcroft’s madel potentials wY(r1 are plotted as the chain CUNCS for liquid 
potassium with a core ndius rc = I .U5 A, and for liquid sodium with core radius rc = 0.905 A. 
The upper curves of potassium m measured against the left vertical axis, while the lower curves 
of sodium are measured against the right axis. 

due to bound electrons. For the reason that an ion has more bound electrons (3s, 3p) in 
liquid potassium than in liquid sodium, the rough approximation to the core-electron effect 
in Ashcroft’s potential may cause the deviations of the electron distribution in the case of 
potassium. In order to check this guess it is necessary to carry out the same calculation for 
some heavier elements. 
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